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Abstract. We suggest a simple analytical description of the S-wave isoscalar ππ amplitude, which corre-
sponds to a joint dressing of the bare resonance and background contributions. The amplitude describes
well the experimental data on the δ0

0 phase shift in the energy region below 900 MeV and has two poles in
the Re s > 0 half-plane. Besides the well-known pole of the σ(600)-meson with Re s ∼ m2

π, there exists
a more distant pole with Re s ∼ 0.6GeV2. Our analysis is interpreted as an indication for the dynamical
origin of the σ(600) pole, while the second pole should be associated with lowest qq̄ state.

PACS. 13.75.Lb Meson-meson interactions – 11.30.Rd Chiral symmerties – 14.40.Cs Other mesons with
S = C = 0, mass < 2.5 GeV

1 Introduction

The properties of the lightest scalar meson σ(600) are
very important for the interpretation of a scalar family
and details of the chiral-symmetry breaking. Appearance
of a new experimental information and the theory devel-
opment in the low-energy region generated an extensive
discussion on this issue (see [1–5] and references therein).
As for the existence of σ(600), now it is an almost com-
monly accepted fact and this resonance is included back
into Particle Data Group’s tables.

There is a long story concerning the resonance inter-
pretation of the S-wave amplitude ππ → ππ with isospin
I = 0. One of the key moments of this story was a re-
alization (see, e.g., [6–8]) that apart from the resonance
σ(600) term there is an essential background contribution
in this energy region. However, there is no evident recipe
to divide the ππ amplitude into the resonance and back-
ground terms. The simplest and widely used method is the
“adding in phase shift” of the resonance and background
contributions (IA method in terminology of [7,8]):

δ0
0 = δR + δB. (1)

The amplitude ππ → ππ in this case is

f0
0 (s) =

e2iδ0
0 − 1
2iρ

=
e2iδB − 1

2iρ
+ e2iδB · e

2iδR − 1
2iρ

=

e2iδB − 1
2iρ

+ e2iδB · fRes(s). (2)
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The ansatz (1) may be derived from the summation
of the loop contributions with some extra conditions [6].
To obtain the resonance parameters from the experimental
data one needs an additional assumption about the form of
the background contribution δB. The best way for a broad
resonance is to determine its mass and the width from the
pole position in the complex energy plane. However, only
the resonance contribution fRes(s) of the entire amplitude
(2) can be continued into the complex energy plane. Thus
it is possible to study the pole position but not the pole
residue.

Other methods to describe the δ0
0 phase shift, different

from (1), either have so evident defects, or are much more
complicated with many free parameters.

In this paper we suggest a very simple analytical pa-
rameterization for the ππ amplitude which allows us to
continue it to the second Riemann sheet. The amplitude
contains (in the spirit of the linear σ-model) two bare ob-
jects: the resonance and the background. The main idea
is that a joint unitarization of two objects should be de-
scribed correctly by the field theory methods. As concerns
the form of a background contribution at the tree level, it
can be modelled by a maximally simple method.

There are different ways to construct such analytical
amplitude. We found the formalism of the unitary mixing
to be the suitable one, the obtained amplitude is analyti-
cal and unitary automatically. Such construction is rather
flexible which allows us to investigate some different phys-
ical situations.

Note that on the other hand the bare pole located at
s < 0 may be considered as some effective cross-exchange
and its value m2

2 ∼ −m2
ρ, obtained from a fit, confirms
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this interpretation. As compared with the standard N/D
method our amplitude with two bare objects automati-
cally has a zero, which is necessary to describe the S-wave
low-energy data.

2 Formalism of the unitary mixing

If there exist n bare states with the same quantum num-
bers, then the dressing of their propagators should account
also the mutual transitions between them. The process of
joint dressing is described in this case by the system of
Dyson-Schwinger equations:

Πij(s) = πij(s) −Πik(s)Jkl(s)πlj(s), i, j = 1 . . . n.
(3)

Here πij and Πij are bare and dressed propagators,
respectively, Jij are the self-energy contributions.

Let us consider the mixing of two resonances (n = 2)
with one open intermediate state. In this case the solutions
of (3) are

Π11 =
D2(s)
D(s)

, Π12 =
J12(s)
D(s)

, Π22 =
D1(s)
D(s)

. (4)

Here

D(s) = D1D2 − (J12(s))2,
D1 = m2

1 − s− J11(s), D2 = m2
2 − s− J22(s). (5)

In the case of scalar resonances interacting with a pion
pair, the loops are of the form1

J11(s) = g2
1J(s), J22(s) = g2

2J(s), J12(s) = g1g2J(s).
(6)

J(s) =
s− a

π

∫ ∞

4m2
π

ds′

(s′ − a)(s′ − s)
ρ(s′), (7)

where 0 < a < 4m2
π is the subtraction point, gi are the

coupling constants and ρ(s) = (1 − 4m2
π/s)

1/2.
The ππ amplitude

f = g2
1Π11(s) + g2

2Π22(s) + 2g1g2Π12(s) =
N(s)
D(s)

, (8)

where

D(s) = (m2
1 − s)(m2

2 − s) − J(s)N(s),
N(s) = g2

1(m
2
2 − s) + g2

2(m
2
1 − s). (9)

It is evident that (8) satisfies the elastic unitary con-
dition

Im f = ρ|f |2. (10)

The above equations can be applied not only for the
case of two resonances but also for the “resonance + back-
ground” situation, when one of the bare poles is located

1 Note that we ignore the subtraction constants in the loops.
As is shown in appendix A a subtraction polynomial in the
loops can be removed by the redefinition of bare parameters.
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Fig. 1. Phase shift difference δ0
0 −δ1

1 from experiments on the
Kl4 decay.

at s < 0. Right this situation arises for the S-wave I = 0
ππ → ππ amplitude. One can see from (9) that our am-
plitude is zero at the point

s0
0 = (g2

1m
2
2 + g2

2m
2
1)/(g

2
1 + g2

2), (11)

which should be s0
0 ∼ m2

π to reproduce the Adler zero. So
we have m2

2 < 0 2.
Let m2

2 < 0 be the bare zero of function D(s), which
stays at the left of real axis after dressing. Then it is con-
venient to subtract the loop at this point:

D(s) = (m2
1 − s)(m2

2 − s)− (J(s) − J(m2
2))

× [
g2
1(m

2
2 − s) + g2

2(m
2
1 − s)

]
. (12)

Below we shall use the amplitude (8), (12) for the descrip-
tion of the experimental data. Here m2

1, g
2
1 ,m

2
2, g

2
2 are free

parameters. The background contribution at the tree level
may be modelled by the pole or constant. It is sufficient
for a successful description of the experimental data as is
seen below.

3 Analysis of ππ data in region of
mππ < 900 MeV

In the near-threshold region we use the new data from the
Kl4 decay [10], which may be seen in fig. 1 in comparison
with 1977 data [11]. We do not take into account the old
data [11] as they have no practical effect on the fit. The
measured value in the Kl4 decay is the phase shift differ-
ence δ0

0 − δ1
1 , thus we need an additional information on

2 In spite of m2
2 < 0, we keep using this notation to stress

the presence of two objects in the amplitude. Note by the way
that our amplitude (8) coincides, except for notations, with the
amplitude of ref. [9], obtained from the low-energy bootstrap
equations.
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Fig. 2. Results of the fit of the ππ phase shift by the amplitude
(12). The solid curve is the best fit to the data of the Kl4 decay
and EM II, its parameters can be seen in the first column of
table 1.

the P -wave. We use for this purpose the approximation
of the solution of the Roy equations from ref. [12]. Fortu-
nately, the δ1

1 contribution is only about 1.5◦ at the end
of the interval due to the P -wave threshold behavior, thus
the uncertainty in δ1

1 is negligible.
Our main purpose is the σ(600)-resonance, thus we

restrict ourselves to the energy region mππ < 0.9 GeV. It
allows us to use the one-channel approach and not to take
into account the f0(980) effect. In this region there exist
different experiments and different analyses of the S-wave
phase shifts, see recent reviews [13,14].

Below we use only classical partial analyses of Pro-
topopescu et al. [15] from the π+p → π+π−∆++ reaction
and the Estabrooks and Martin one of the CERN experi-
ment [16] on π−p → π+π−n (let us call their two solutions
for the δ0

0 phase shift EM I and EM II, respectively). Be-
low we consider the mentioned experimental data on the
δ0
0 phase shift and find very similar conclusions. As an ex-

ample we focus in more detail on the the EM II solution.
Figure 2 displays the results of joint fitting of Kl4

data (mππ < 0.4 GeV) and EM II data (0.51 < mππ <
0.9 GeV). One can see that our amplitude (12) describes
these data well.

Best-fit parameters are (in units of GeV2)

m2
1 = 0.659 ± 0.041, g2

1 = 0.435 ± 0.036,
m2

2 = −0.230 ± 0.114, g2
2 = 0.177 ± 0.067,

χ2/DOF = 17.7/21. (13)

Let us consider the zeros of function D(s) at the second
Riemann sheet3. The procedure of analytical continuation

3 The values of the bare parameters have rather limited
meaning since they correspond to a given method of renor-
malization. However, the character of the pole movement is
more meaningful, at least when the loop contributions do not
dominate in amplitude.
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Fig. 3. Poles of the amplitude ππ → ππ with J = I = 0 on the
second Riemann sheet at parameters (13). The arrows indicate
the direction of the poles movement when the interaction is
turned off.
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Fig. 4. Phase shifts corresponding to the different sets of
parameters shown in table 1.

is described in appendix B. Figure 3 shows the zeros loca-
tion in the complex s plane corresponding to the best-fit
parameters (13). Let us stress that we find two zeros in
the Re s > 0 half-plane.

Table 1 represents the results of the fit of the different
low-energy data by our amplitude (12). All data sets lead
to the solutions with two poles: close and distant4.

In fig. 4 we compare phase shifts corresponding to dif-
ferent variants of table 1.

We can see that our simple model (12) corresponding
to joint unitarization of two bare objects, one pole at s < 0
and another pole at s > 0, describes successfully the ππ
phase shift δ0

0 in the energy region below 900 MeV. We find

4 Our amplitude has a property f(s∗) = f∗(s), thus we have
a pair of the complex conjugate poles in the complex s plane.
For definiteness we say about poles in the Im s < 0 half-plane.
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Table 1. Results of the fit of the different sets of experimental data by our amplitude. m2
i , g2

i , si are in units of GeV2. In the
last column our parameterization is compared to the approximation of the phase shift from ref. [12] (Solution [17] of the Roy
equations with use of scattering lengths from the two-loop chiral perturbation theory calculations.) Our phase shift practically
coincides with the CGL approximation in this energy region.

Kl4 + EM II Kl4 + EM I Kl4 + Protopopescu CGL [12]
E < 0.9 GeV E < 0.9 GeV E < 0.9 GeV E < 0.8 GeV

m2
1 = 0.659 ± 0.041 m2

1 = 0.586 ± 0.025 m2
1 = 0.794 ± 0.114 m2

1 = 0.845
g2
1 = 0.435 ± 0.036 g2

1 = 0.382 ± 0.020 g2
1 = 0.598 ± 0.151 g2

1 = 0.779
m2

2 = −0.230 ± 0.114 m2
2 = −0.113 ± 0.053 m2

2 = −0.580 ± 0.405 m2
2 = −0.573

g2
2 = 0.177 ± 0.067 g2

2 = 0.116 ± 0.030 g2
2 = 0.422 ± 0.331 g2

2 = 0.548
χ2/DOF = 17.7/21 χ2/DOF = 22.6/21 χ2/DOF = 5.3/19 χ2/DOF = 0

Poles: Poles: Poles: Poles:
s1 = 0.015 − i 0.192 s1 = 0.045 − i 0.132 s1 = 0.055 − i 0.339 s1 = 0.104 − i 0.250
s2 = 0.633 − i 0.630 s2 = 0.632 − i 0.533 s2 = 0.484 − i 1.020 s2 = 0.659 − i 1.620
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Fig. 5. Data fit at fixed value of the left pole m2
2.

two poles in the complex s plane: one close to the origin
with Re s ∼ m2

π and the second one with Re s ∼ 0.6GeV2.
However, the behavior of the poles when the interaction
is turned off g2

i → 0 is rather unexpected (see fig. 3): the
close pole traditionally identified with the σ(600)-meson
moves to the negative-s region. While the second pole s2

(most of previous analyses did not observe it) tends to the
real axis above the threshold.

As an alternative we can investigate the case when
the background has not bare pole. It corresponds to the
joint dressing in the system “σ-pole + constant”. For this
purpose it is sufficient to put the value m2

2 negative and
large in our amplitude (12).

In fig. 5 the results of data fit with different m2
2 values

are shown. One can see that the experimental data prefer
the rather close left pole |m2

2| < 0.6GeV2.
Figure 6 illustrates the pole positions in the com-

plex plane at value m2
2 = −1GeV2 and their behav-

ior when interaction is turned off. We observe that the
behavior of poles has been changed as compared with
m2

2 > −0.5GeV2 case.
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Fig. 6. a) Poles positions in the complex s plane at m2
2 =

−1GeV2 (fit of the data Kl4 + EM II) and their movement
at gi → 0; b) illustration of the poles movement. As compared
with a) we slightly reduced the coupling constants g2

i → 0.75g2
i

with the other parameters fixed.
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4 Discussion

We found that the ππ phase shift δ0
0 is well described by

a simple analytical amplitude (12) in the energy region
from the threshold up to 900 MeV. Our amplitude corre-
sponds to a joint dressing of two bare objects: resonance
and background contributions. Background can be mod-
elled either by a pole with Re s < 0 or by a constant.
As a next step one could investigate the more compli-
cated background model: left pole + constant (just as in
the linear σ-model). However, since our simple amplitude
(12) provides a good description of the experimental data
we suppose that the inclusion of new degrees of freedom
has no meaning.

After the fit of the experimental data we found the
presence of two complex poles at the second Riemann
sheet: one close to the origin with Re s1 ∼ m2

π and the
second one with Re s2 ∼ 0.5–0.6GeV2. The close pole was
seen in most of the previous analyses of ππ scattering (its
position is defined mainly by Adler zero) and it was as-
sociated with the lightest scalar meson σ(600). Note that
we approximated the background term at the tree level by
some pole, physically it corresponds to the cross-exchange
by the ρ- or σ-meson. The existing experimental data cer-
tainly prefer the pole form of the background as compared
with the constant.

As for the behavior of the poles in the limit of gi → 0
we observe that only the distant pole goes to the real
axis at positive s (see fig. 3). This fact holds true for all
variants indicated in table 1. More detailed investigation
shows that such a behavior changes with the m2

2 value as is
schematically illustrated in fig. 7. The experimental data
on ππ scattering with energy below 900 MeV prefer the
variant a), while the variant b) with m2

2 ∼ −1GeV2 also
cannot be excluded (see fig. 5). For example, the found
χ2 values are χ2/DOF = 17.7/22 for a) and χ2/DOF =
22.6/22 for b) in one of the variants of the fit.

In view of the discussion [18–21,5] on whether the
σ(600) is an intrinsic state or it is dynamically generated,
our results should be interpreted as an indication for a
dynamical nature of the σ(600). In this case the second
pole should be associated with the intrinsic qq̄ state hav-
ing regard to the above remarks.

We suppose that the most interesting question is the
meaning of the second pole s2. It was seen only in a few
previous analyses, e.g. in [2], where it was considered as an
artefact since it was located out of the considered energy
region. In our analysis with account of the much more ex-
act data from the Kl4 decay, this pole has moved to the
lower value Re s2 ∼ 0.6GeV2. As for its imaginary part,
it is rather uncertain (see table 1) and may be abnormally
large for the resonance state. We suppose that the fur-
ther fate of this pole may be solved by an analysis in the
extended energy region.

In any case it is clear that in fact we have the joint
complex “σ(600) + Background + f0(980)”, which should
be studied jointly and by the adequate methods.
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Appendix A. Reparameterization of hadron
amplitude

Let us consider the unitary mixing of two bare poles with
the presence of one intermediate state. We are interested
in a number of independent parameters in the ππ → ππ
amplitude. Let us write it in matrix form:

f =
(
g1, g2

) (
Π11, Π12

Π21, Π22

) (
g1

g2

)
≡ gT ·Π · g (A.1)

Here Π is the symmetrical matrix of the propagator.
Let us start from the most general case when all loops

have a subtraction polynomial of first degree5.

Jij = gigj(Pij(s)+J(s)) = gigj(aij + bijs+J(s)), (A.2)

where

J(s) =
s− a

π

∫ ∞

4m2
π

ds′

(s′ − a)(s′ − s)

√
s′ − 4m2

π

s′
. (A.3)

Here a is subtraction point 0 < a < 4m2
π; for analytical

continuation it is not convenient to subtract the integral
at zero. There are ten parameters: bare masses m1,m2,
coupling constants g1, g2 and 6 subtraction parameters in
the loops.

We can perform a transformation of propagators and
coupling constants, which does not change the amplitude:

f = gT · S−1S ·Π · S−1S · g = g′T ·Π ′ · g′,
Π ′ = SΠS−1, g′ = Sg. (A.4)

Let us make few transformations consequently:

1. Firstly by the orthogonal transformation

S =
(

cos θ sin θ
− sin θ cos θ

)

we delete the linear-on-s term in the non-diagonal loop:
b′12 = 0.

2. Then by the scale transformation

Γ =
(
γ1 0
0 γ2

)

we make the coefficient at s in Π11, Π22 by unity. Af-
ter it any orthogonal transformation cannot generate
again the linear-on-s term in the non-diagonal loop.

3. We use one more orthogonal transformation to delete
a subtraction constant in the non-diagonal loop.

4. Finally, we can redefine the masses, absorbing the sub-
traction constants in the diagonal loops.

As a result we came to parametrization (4)-(7) which
contains four parameters: masses and coupling constants.

5 A higher degree of the polynomials leads to the domination
of loops contributions at large s. It leads to the changing of
the problem’s index and to changing of number of poles as
compared with the non-interactive case.

Appendix B. Analytical continuation of the
loop

Let us consider the two-sheet analytical function:

F (n)(s) = i

√
s− 4m2

π

s
=

i

∣∣∣∣s− 4m2
π

s

∣∣∣∣
1/2

ei ϕ1/2

ei ϕ2/2
· (−1)(n−1), n = 1, 2. (B.1)

The cuts are chosen from −∞ to zero and from 4m2
π to

+∞.
Let us write down the Cauchy theorem on the first

Riemann sheet:

F (1)(s) − F (1)(a) = J (1) + L(s) , (B.2)

0 < a < 4m2
π,

J (1) =
s− a

π

∫ ∞

4m2
π

ds′

(s′ − a)(s′ − s)

√
s′ − 4m2

π

s′
,

L(s) =
s− a

π

∫ 0

−∞

ds′

(s′ − a)(s′ − s)

√
4m2

π − s′

−s′
. (B.3)

One can see from (B.2) that continuation of the loop to
the second Riemann sheet is performed as

J (2) = −F (1)(s) − F (1)(a) − L(s) =

J (1) − 2F (1) =
−J (1) − 2(F (a) + L(s)). (B.4)

The first expression seems the most convenient in numer-
ical calculations.
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